produces an OA(s^k, (s^k-1)/(s-1), s, 2) (Rao-Hamming construction)

createSaturated(s, k = 2)

Arguments

s

the prime or prime power to use

k

integer; determines the run size: the resulting array will have s^k runs

Value

createSaturated returns an s^k times (s^k-1)/(s-1) matrix (saturated regular OA with s-level columns)

Details

For many situations, the saturated fractions produced by this function are not the best choice for direct use in experimentation, because they heavily confound main effects with interactions.
If not all columns are needed, using the last m columns may yield better results than using the first m columns.
If possible, stronger OAs from other sources can be used, e.g. from package FrF2 for 2-level factors or from package DoE.base for factors with more than 2 levels.

Examples

createSaturated(3, k=3)  ## 27 x 13 array in 3 levels
#>       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
#>  [1,]    0    0    0    0    0    0    0    0    0     0     0     0     0
#>  [2,]    1    0    0    0    0    1    1    1    1     1     1     1     1
#>  [3,]    2    0    0    0    0    2    2    2    2     2     2     2     2
#>  [4,]    0    1    0    1    1    0    0    1    1     1     2     2     2
#>  [5,]    1    1    0    1    1    1    1    2    2     2     0     0     0
#>  [6,]    2    1    0    1    1    2    2    0    0     0     1     1     1
#>  [7,]    0    2    0    2    2    0    0    2    2     2     1     1     1
#>  [8,]    1    2    0    2    2    1    1    0    0     0     2     2     2
#>  [9,]    2    2    0    2    2    2    2    1    1     1     0     0     0
#> [10,]    0    0    1    1    2    1    2    0    1     2     0     1     2
#> [11,]    1    0    1    1    2    2    0    1    2     0     1     2     0
#> [12,]    2    0    1    1    2    0    1    2    0     1     2     0     1
#> [13,]    0    1    1    2    0    1    2    1    2     0     2     0     1
#> [14,]    1    1    1    2    0    2    0    2    0     1     0     1     2
#> [15,]    2    1    1    2    0    0    1    0    1     2     1     2     0
#> [16,]    0    2    1    0    1    1    2    2    0     1     1     2     0
#> [17,]    1    2    1    0    1    2    0    0    1     2     2     0     1
#> [18,]    2    2    1    0    1    0    1    1    2     0     0     1     2
#> [19,]    0    0    2    2    1    2    1    0    2     1     0     2     1
#> [20,]    1    0    2    2    1    0    2    1    0     2     1     0     2
#> [21,]    2    0    2    2    1    1    0    2    1     0     2     1     0
#> [22,]    0    1    2    0    2    2    1    1    0     2     2     1     0
#> [23,]    1    1    2    0    2    0    2    2    1     0     0     2     1
#> [24,]    2    1    2    0    2    1    0    0    2     1     1     0     2
#> [25,]    0    2    2    1    0    2    1    2    1     0     1     0     2
#> [26,]    1    2    2    1    0    0    2    0    2     1     2     1     0
#> [27,]    2    2    2    1    0    1    0    1    0     2     0     2     1