Orthogonal Array Library  1.0.0
Libray for generating orthogonal arrays based on Art Owen's oa library
All Classes Namespaces Files Functions Variables Typedefs Macros Pages
ak.h
Go to the documentation of this file.
1 
31 #ifndef AK_H
32 #define AK_H
33 
34 #include "OACommonDefines.h"
35 #include "GaloisField.h"
36 #include "primes.h"
37 #include "matrix.h"
38 
39 namespace oacpp {
43  namespace oaaddelkemp
44  {
54  int addelkemp3check(int q, int p, int ncol);
55 
66  int akeven(GaloisField & gf, int* kay, std::vector<int> & b, std::vector<int> & c, std::vector<int> & k);
67 
78  int akodd(GaloisField & gf, int* kay, std::vector<int> & b, std::vector<int> & c, std::vector<int> & k);
79 
89  int addelkempncheck(int q, int p, int akn, int ncol);
90 
100  int addelkempn(GaloisField & gf, int akn, bclib::matrix<int> & A, int ncol);
101 
110  int addelkemp3(GaloisField & gf, bclib::matrix<int> & A, int ncol );
111  }
112 }
113 
114 #endif
oacpp::oaaddelkemp::addelkempn
int addelkempn(GaloisField &gf, int akn, bclib::matrix< int > &A, int ncol)
The addelkemp algorithm for general n to produce OA(2q^n,ncol,q,2)
Definition: akn.cpp:62
GaloisField.h
oacpp
Orthogonal Array Namespace.
Definition: ak.h:39
oacpp::GaloisField
Class to define a Galois Field and Methods for operations.
Definition: GaloisField.h:27
oacpp::oaaddelkemp::akeven
int akeven(GaloisField &gf, int *kay, std::vector< int > &b, std::vector< int > &c, std::vector< int > &k)
Addelkemp algorithm for even p
Definition: akconst.cpp:39
oacpp::oaaddelkemp::akodd
int akodd(GaloisField &gf, int *kay, std::vector< int > &b, std::vector< int > &c, std::vector< int > &k)
Addelkemp algorithm for odd p
Definition: akconst.cpp:71
primes.h
OACommonDefines.h
oacpp::oaaddelkemp::addelkempncheck
int addelkempncheck(int q, int p, int akn, int ncol)
Check that the parameters are consistent for the addelkempn algorithm.
Definition: akn.cpp:37
oacpp::oaaddelkemp::addelkemp3check
int addelkemp3check(int q, int p, int ncol)
Check that the parameters of the addelkemp3 algorithm are consistent (ncol <= 2q^2+2q+1
Definition: ak3.cpp:37
oacpp::oaaddelkemp::addelkemp3
int addelkemp3(GaloisField &gf, bclib::matrix< int > &A, int ncol)
The addelkemp algorithm for n=3.
Definition: ak3.cpp:60