Latin Hypercube Samples (lhs)
1.0
R, C++, and Rcpp code to generate Latin hypercube samples
|
Functions | |
int | bosecheck (int q, int ncol) |
int | bose (GaloisField &gf, bclib::matrix< int > &A, int ncol) |
int | itopoly (int n, int q, int d, std::vector< int > &coef) |
int | polyeval (GaloisField &gf, int d, std::vector< int > &poly, int arg, int *value) |
int | bushcheck (int q, int str, int ncol) |
int | bush (GaloisField &gf, bclib::matrix< int > &A, int str, int ncol) |
int | addelkempcheck (int q, int p, int ncol) |
int | addelkemp (GaloisField &gf, bclib::matrix< int > &A, int ncol) |
int | bosebushcheck (int q, int p, int ncol) |
int | bosebush (GaloisField &gf, bclib::matrix< int > &B, int ncol) |
int | bosebushlcheck (int s, int p, int lam, int ncol) |
int | bosebushl (GaloisField &gf, int lam, bclib::matrix< int > &B, int ncol) |
Namespace to construct Orthogonal Arrays using various algorithms
int oacpp::oaconstruct::addelkemp | ( | GaloisField & | gf, |
bclib::matrix< int > & | A, | ||
int | ncol | ||
) |
Implement Addelman and Kempthorne's 1961 A.M.S. method with n=2
gf | a Galois field |
A | an matrix to return the orthogonal array |
ncol | the desired number of columns |
int oacpp::oaconstruct::addelkempcheck | ( | int | q, |
int | p, | ||
int | ncol | ||
) |
Test the inputs to the Addel-Kemp algorithm
q | the order of Galois field |
p | the prime basis of the Galois field |
ncol | the number of columns in the orthogonal array |
int oacpp::oaconstruct::bose | ( | GaloisField & | gf, |
bclib::matrix< int > & | A, | ||
int | ncol | ||
) |
Construct an orthogonal array using the bose algorithm
OA( q^2, q+1, q, 2 ) R.C. Bose (1938) Sankhya Vol 3 pp 323-338
gf | a Galois field |
A | an matrix to return the orthogonal array |
ncol | the number of columns |
int oacpp::oaconstruct::bosebush | ( | GaloisField & | gf, |
bclib::matrix< int > & | B, | ||
int | ncol | ||
) |
Construct an orthogonal array using the bosebush algorithm
OA( 2q^2, 2q+1, q, 2 ), only implemented for q=2^n Implement Bose and Bush's 1952 A.M.S. method with p=2, u=1
gf | a Galois field |
B | an matrix to return the orthogonal array |
ncol | the desired number of columns |
int oacpp::oaconstruct::bosebushcheck | ( | int | q, |
int | p, | ||
int | ncol | ||
) |
Test the inputs to the Bose-Bush algorithm (p == 2, ncol <= 2q + 1
)
q | the order of the Galois Field |
p | the prime basis of the Galois Field (q = p^n ) |
ncol | the number of columns in the orthogonal array |
int oacpp::oaconstruct::bosebushl | ( | GaloisField & | gf, |
int | lam, | ||
bclib::matrix< int > & | B, | ||
int | ncol | ||
) |
Construct an orthogonal array using the bose-bush algorithm
gf | a Galois field |
lam | lambda |
B | an matrix to return the orthogonal array |
ncol | the desired number of columns |
int oacpp::oaconstruct::bosebushlcheck | ( | int | s, |
int | p, | ||
int | lam, | ||
int | ncol | ||
) |
Test the inputs to the Bose-Bush algorithm with lambda parameter (ncol <= lambda*q + 1
)
s | s = q / lambda |
p | the prime basis of the Galois Field |
lam | the lambda parameter |
ncol | the number of columns in the orthogonal array |
int oacpp::oaconstruct::bosecheck | ( | int | q, |
int | ncol | ||
) |
Check the input to the bose algorithm (ncol <= q + 1) where q = p^n
q | the number of symbols |
ncol | the number of columns |
int oacpp::oaconstruct::bush | ( | GaloisField & | gf, |
bclib::matrix< int > & | A, | ||
int | str, | ||
int | ncol | ||
) |
Construct an orthogonal array using the bush algorithm
gf | a Galois field |
A | an matrix to return the orthogonal array |
str | the array strength |
ncol | the desired number of columns |
int oacpp::oaconstruct::bushcheck | ( | int | q, |
int | str, | ||
int | ncol | ||
) |
Test the inputs to the Bush algorithm (ncol <= q + 1, str <= ncol, str < q + 1
)
q | the order of the Galois Field |
str | the orthogonal array strength |
ncol | the number of columns in the orthogonal array |
int oacpp::oaconstruct::itopoly | ( | int | n, |
int | q, | ||
int | d, | ||
std::vector< int > & | coef | ||
) |
Integer to polynomial
n | the input integer |
q | the order of the Galois field |
d | the degree of the polynomial. A degree 3 polynomial will have 4 coefficients (x^0, x^1, x^2, x^3) |
coef | vector of polynomial coefficients |
int oacpp::oaconstruct::polyeval | ( | GaloisField & | gf, |
int | d, | ||
std::vector< int > & | poly, | ||
int | arg, | ||
int * | value | ||
) |
Evaluate a polynomial with coefficients, argument and result in a Galois field
gf | a Galois field |
d | the polynomial degree. A degree 3 polynomial will have 4 coefficients (x^0, x^1, x^2, x^3) |
poly | the polynomial coefficients |
arg | the value of the polynomial independent variable |
value | the result |