Maximum likelihood estimate of the standard triangle distribution mode
Source:R/mle.R
standard_triangle_mle.Rd
Maximum likelihood estimate of the standard triangle distribution mode
Arguments
- x
sample from a triangle distribution
- debug
if
TRUE
then the function will check the input parameters and print calculation information
Value
an object of S3 class triangle_mle
containing a list with the call, coefficients,
variance co-variance matrix, minimum negative log likelihood,
number of observations, and the sample
References
Samuel Kotz and Johan Rene van Dorp. Beyond Beta doi:10.1142/5720
Examples
xtest <- c(0.1, 0.25, 0.3, 0.4, 0.45, 0.6, 0.75, 0.8)
standard_triangle_mle(xtest)
#> Triangle Maximum Likelihood Estimates
#>
#> Call: standard_triangle_mle(x = xtest)
#>
#> Estimates:
#> Estimate Std.Err
#> a 0.0 0.0000
#> b 1.0 0.0000
#> c 0.3 0.0871
#>
#> Convergence Code: NA
#>
xtest <- rtriangle(20, 0, 1, 0.63)
standard_triangle_mle(xtest)
#> Triangle Maximum Likelihood Estimates
#>
#> Call: standard_triangle_mle(x = xtest)
#>
#> Estimates:
#> Estimate Std.Err
#> a 0.00000 0.0000
#> b 1.00000 0.0000
#> c 0.67182 0.0556
#>
#> Convergence Code: NA
#>