Triangle parameter estimates using a non-linear fit of the empirical CDF
Source:R/cdfe.R
triangle_cdfe.Rd
Triangle parameter estimates using a non-linear fit of the empirical CDF
Usage
triangle_cdfe(x, control = stats::nls.control(maxiter = 100, warnOnly = TRUE))
Arguments
- x
the triangle distributed sample
- control
an object created by
stats::nls.control
Examples
set.seed(10304)
xtest <- rtriangle(100, 1, 5, 2)
cdfe <- triangle_cdfe(xtest)
print(cdfe)
#> Nonlinear regression model
#> model: ecdf1 ~ ptriangle(x, a, b, c)
#> data: parent.frame()
#> a b c
#> 0.7848 5.3555 2.1059
#> residual sum-of-squares: 0.03265
#>
#> Algorithm "port", convergence message: relative convergence (4)
summary(cdfe)
#>
#> Formula: ecdf1 ~ ptriangle(x, a, b, c)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> a 0.78482 0.04266 18.40 <2e-16 ***
#> b 5.35551 0.03210 166.84 <2e-16 ***
#> c 2.10587 0.04613 45.65 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.01835 on 97 degrees of freedom
#>
#> Algorithm "port", convergence message: relative convergence (4)
#>
coef(cdfe)
#> a b c
#> 0.7848163 5.3555055 2.1058729
if (FALSE) {
confint(cdfe)
}