Maximum likelihood estimate of the triangle distribution parameters
Arguments
- x
sample from a triangle distribution
- debug
if
TRUE
then the function will check the input parameters and print calculation information- maxiter
the maximum number of cycles of optimization between maximizing
a
andb
givenc
and maximizingc
givena
andb
Value
an object of S3 class triangle_mle
containing a list with the call, coefficients,
variance co-variance matrix, minimum negative log likelihood, details of the optimization
number of observations, and the sample
References
Samuel Kotz and Johan Rene van Dorp. Beyond Beta doi:10.1142/5720
Examples
xtest <- c(0.1, 0.25, 0.3, 0.4, 0.45, 0.6, 0.75, 0.8)
triangle_mle(xtest)
#> Triangle Maximum Likelihood Estimates
#>
#> Call: triangle_mle(x = xtest)
#>
#> Estimates:
#> Estimate Std.Err
#> a 0.0076277 0.0996
#> b 0.9939370 0.1649
#> c 0.3000000 0.0861
#>
#> Convergence Code: 0
#> CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH
xtest <- rtriangle(20, 1, 5, 3.5)
triangle_mle(xtest)
#> Triangle Maximum Likelihood Estimates
#>
#> Call: triangle_mle(x = xtest)
#>
#> Estimates:
#> Estimate Std.Err
#> a 1.5521 0.2339
#> b 4.4910 0.1430
#> c 3.8333 0.1430
#>
#> Convergence Code: 0
#> CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH