The addelkempn program produces OA( 2*q^n, k, q, 2 ), k <= 2(q^n - 1)/(q-1)-1, for prime powers q. q may be an odd prime power, or q may be 2 or 4.

createAddelKempN(q, ncol, exponent, bRandom = TRUE)

Arguments

q

the number of symbols in the array

ncol

number of parameters or columns

exponent

the exponent on q

bRandom

should the array be randomized

Value

an orthogonal array

Details

From Owen: An orthogonal array A is a matrix of n rows, k columns with every element being one of q symbols 0,...,q-1. The array has strength t if, in every n by t submatrix, the q^t possible distinct rows, all appear the same number of times. This number is the index of the array, commonly denoted lambda. Clearly, lambda*q^t=n. The notation for such an array is OA( n, k, q, t ).

See also

Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createBush()], [createAddelKemp()], [createAddelKemp3()], [createBusht()], [createBoseBushl()]

Examples

A <- createAddelKempN(3, 4, 3, TRUE)
B <- createAddelKempN(3, 4, 4, TRUE)