2q^n
rows.R/createOA.R
createAddelKempN.Rd
The addelkempn
program produces
OA( 2*q^n, k, q, 2 )
, k <= 2(q^n - 1)/(q-1)-1
, for prime powers q
.
q
may be an odd prime power, or q
may be 2 or 4.
createAddelKempN(q, ncol, exponent, bRandom = TRUE)
the number of symbols in the array
number of parameters or columns
the exponent on q
should the array be randomized
an orthogonal array
From Owen: An orthogonal array A
is a matrix of n
rows, k
columns with every element being one of q
symbols
0,...,q-1
. The array has strength t
if, in every n
by t
submatrix, the q^t
possible distinct rows, all appear
the same number of times. This number is the index
of the array, commonly denoted lambda
. Clearly,
lambda*q^t=n
. The notation for such an array is OA( n, k, q, t )
.
Other methods to create orthogonal arrays [createBoseBush()], [createBose()], [createBush()], [createAddelKemp()], [createAddelKemp3()], [createBusht()], [createBoseBushl()]
A <- createAddelKempN(3, 4, 3, TRUE)
B <- createAddelKempN(3, 4, 4, TRUE)